Super SKAPE: La Problemática de las Superbacterias

Super SKAPE: The Superbug Problem

Autores/as

  • Felipe Diel UniBF, Brasil.

DOI:

https://doi.org/10.59085/2789-7818.2023.75

Palabras clave:

Superbacterias, multirresistencia bacteriana, infecciones nosocomiales

Resumen

Esta investigación explora los conceptos y el historial del conocimiento sobre el desarrollo de las superbacterias, así como la problemática que representa para los profesionales de la salud, en especial, a los médicos para el tratamiento y prevención de infecciones nosocomiales. Las principales superbacterias conocidas por la comunidad científica están identificadas en cada letra del acrónimo ESKAPE – Enterococcus spp., Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterobacter spp. Este estudio presenta la necesidad de establecer protocolos y políticas públicas de salud para combatir el uso indiscriminado de antimicrobianos para prevenir o al menos ralentizar el proceso de multirresistencia bacteriana.

Abstract

This research explores the concepts and history of knowledge about the development of superbugs, as well as the problems it represents for health professionals, especially doctors for the treatment and prevention of nosocomial infections. The main superbugs known to the scientific community are identified in each letter of the acronym ESKAPE – Enterococcus spp., Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. This study presents the need to establish protocols and public health policies to combat the indiscriminate use of antimicrobials to prevent or at least slow down the process of bacterial multiresistance.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Chavez-Jacobo VM. La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. In: TIP Revista Especializada en Ciencias Químico-Biológicas, 23: 1-11, 2020. doi: 10.22201/fesz.23958723e.2020.0.202

(2) Aminov R. History of antimicrobial drug Discovery, 2017.

(3) Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antimicrobial drug discovery. Angew. Chem. Int. Ed. Engl., 53(34), 8840-8869, 2014. https://doi.org/10.1002/anie.201310843.

(4) Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat. Rev. Microbiol., 15(7), 422-434, 2017. https://doi.org/10.1038/nrmicro.2017.28.

(5) Viale P, Giannella M, Tedeschi S, Lewis R. Treatment of MDR-Gram negative infections in the 21st century: a never-ending threat for clinicians. Curr. Opin. Phramacol., 24, 30-37, 2015. https://doi.org/10.1016/j.coph.2015.07.001.

(6) Shore AC, Deasy EC, Slickers P, Brenan G, O´Connell B, Monecke S, Ehricht R, Coleman DC. Detection of Staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecRI, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother, 55(8), 3765-3773, 2011. https://doi.org/10.1128/ AAC.00187-11.

(7) Rossolini GM, D´Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbio. Infect., 14(1), 33-41, 2008. https://doi.org/10.1111/j.1469-0691.2007.01867.x.

(8) O´Neil J. Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. amr-review.org, 2016. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover. pdf .

(9) Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ovellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N. Discovery, research, and the development of new antibiotics: the WHO priority list of antibiotics-resistant bacteria and tuberculosis. Lancet Infect. Dis., 18, 318-327, 2018. https://doi.org/10.1016/S1473-3099(17)30753-3.

(10) Rice, L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis., 197(8), 1079-1081, 2008. https://doi.org/10.1086/533452.

(11) Fisher K, Phillips C. The ecology, epidemiology and virulence f Enterococcus. Microbiology, 155, 1749-1757, 2009. https://doi.org/10.1099/mic.0.026385-0.

(12) Messi P, Guerrieri E, Niederhaussern S, Sabia C, Bondi M. Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int. J. Food Microbiol., 107(2), 218-222, 2006. https://doi.org/10.1016/j.ijfoodmicro.2005.08.026.

(13) Ogier J, Serror P. Safety assessment of diary microorganisms: The Enterococcus genus. Int. J. Food Microbiol., 126, 291-301, 2008. https://doi.org/10.1016/j.ijfoodmicro.2007.08.017.

(14) Brown DFJ, Hope R, Livermore DM, Brick G, Broughton K, George RC, Reynolds R. Non-susceptibility trends among enterococci and non-pneumococcal streptococci from bacteraemias in the UK and Ireland, 2001-06. J. Antimicrob. Chemother 62(2), 75-85, 2008. https://doi.org/10.1093/jac/dkn354.

(15) Kang M, Xie Y, He C, Chen ZY, Guo L, Yang Q, Liu JY, Du Y, Ou QS, Wang LL. Molecular characteristics of vancomycin-resistant Enterococcus feacium from a tertiary care hospital in Chengdu, China. Eur. J. Clin. Microbiol. Infect. Dis., 33(6), 933-939, 2014. https://doi.org/10.1007/s10096-013-2029-z.

(16) Appelbaum PC. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin. Infect. Dis., 45(3), 165-170, 2007. https://doi.org/10.1086/519474.

(17) Boubaker K, Diebold P, Blanc DS, Vandenesch F, Praz G, Dupuis G, Troillet N. Panton-Valentine leukocidin and Staphyloccoccal skin infections in schoolchildren. Emerg Infect Dis., 10(1), 121-124, 2004. https://doi.org/10.3201/eid1001.030144.

(18) Sakoulas G, Moellering RC. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin. Infect. Dis. , 46(5), 360-367, 2008. https:// doi.org/10.1086/533592.

(19) Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Invest., 124(7), 2836-2840, 2014. https://doi.org/10.1172/JCI68834.

(20) Clegg S, Murphy CN. Epidemiology and virulence of Klebsiella pneumoniae. Microbiol. Spctr., 4(1), UTI-0005, 2016. https://doi.org/10.1128/microbiolspec. UTI-0005-2012.

(21) Quennan AM, Bush K. Carbapenemases: the versatile β-Lactamases. Clin. Microbiol. Rev. 20(3), 440-458, 2007. https://doi.org/10.1128/CMR.00001-07.

(22) Lee C, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha C, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect. Microbiol., 7, 55, 2017. https://doi.org/10.3389/fcimb.2017.00055.

(23) Choi CH, Lee EY, Lee YC, Park TI, Kim HJ, Hyun SH, Kim HJ, Hyun SH, Kim SA, Lee S, Lee JC. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol., 7(8), 1127-1138, 2005. https://doi.org/10.1111/j.1462-5822.2005.00538.x.

(24) Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. Cli. Microbiol Rev. 21(3), 538-582, 2008. https://doi.org/10.1128/CMR.00058-07.

(25) Lupo A, Haenni M, Madec J. Antimicrobial resistance in Acinetobacter sp. and Pseudomonas spp. Microbiol. Spectrum., 6(3), ARBA-0007, 2018. https://doi.org/10.1128/microbiolspec.ARBA-0007-2017.

(26) Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 37 (1), 177-192, 2019. https://doi.org/10.1016/j.biotechadv.2018.11.013.

(27) Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clonical impact and emerging antibiotic resistance. Future Microbiol., 7(7), 887-902, 2012. https://doi.org/10.2217/fmb.12.61.

(28) Davin-Regli A, Lavigne J, Pagés J. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev. 32(4), e00002-19, 2019. https://doi.org/10.1128/CMR.00002-19.

(29) Corkill JE, Anson JJ, Hart A. High prevalence of plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J. Antimicrob. Chemother, 56, 1115-1117, 2005. https://doi.org/10.1093/jac/dki388.

Publicado

01-07-2023

Cómo citar

Diel, F. (2023). Super SKAPE: La Problemática de las Superbacterias: Super SKAPE: The Superbug Problem. Epicentro - Revista De Investigación Ciencias De La Salud, 3(5), 31–39. https://doi.org/10.59085/2789-7818.2023.75