In silico study of silver nanoparticles against Parkinson’s disease through molecular docking

Authors

DOI:

https://doi.org/10.59085/2789-7818.2022.32

Keywords:

Docking molecular, Nanomedicina, Enfermedad de Parkinson, In silico

Abstract

Parkinson's disease is the second-largest neurodegenerative disease in the world, and nanotechnology has great potential to improve current treatments. Thus, this work aimed to study the interaction of silver nanoparticle (AgNP) with E3 UBIQUITIN-PROTEIN LIGASE PARKIN PARK2 (Parkina) a target protein for Parkinson's disease. The target protein PARK2 (Parkina) was chosen from Protein Data Bank (PDB) platform with PDB ID: 4BM9. The AgNP was obtained with a CIF file of cubic Ag uploaded in Nanocrystal platform to generate coordinates of AgNP.pdb file with 1865 atoms. Molecular docking was performed with HDOCK server, a cubic grid box was configured to encompass the entire enzyme, adjusted to 1.0 angstrom. The HDOCK server is used to predict the binding complexes between two molecules like proteins and ligands by using a hybrid docking strategy. The docking model applied was the algorithm based on a geometric model. For the result evaluation, 2.5 angstroms were applied as a contact zone between the AgNP and amino acid residues. Our results show that hydrophilic and hydrophobic interactions were observed with Molecular Lipophilicity Potential values with an average of -4,218 MLP. The regions next to N-terminus of the enzyme present a greater area of interaction with AgNPs. The cysteine, glutamine, and glutamate amino acid residues present the highest affinity with the surface of the AgNP evaluated in this study. We conclude that molecular docking results of receptor-ligand interaction of PARK2 (Parkina) can contribute to the search for new drugs and therapies to inhibit Parkinson's disease.

Downloads

Download data is not yet available.

Author Biographies

Geyse Santos, Faculdad de Ciencias de la Salud, Universidad Central del Paraguay, Pedro Juan Caballero, Amambay, Paraguay

Licenciada en Química. Especialista en Educación. Estudiante de Medicina.

Rachel Nhoato Huber, Facultad de Ciencias de la Salud, Universidad Central del Paraguay, Pedro Juan Caballero, Amambay, Paraguay

Licenciada en Comunicación Social, Estudiante de Medicina.

Geovani Fabian Meireles Duarte, Facultad de Ciencias de la Salud, Universidad Central del Paraguay, Pedro Juan Caballero, Amambay, Paraguay

Maestría en Educación con énfasis en Docencia Universitaria en curso (Universidad Americana, Paraguay), Especialista en Análisis Clínicas y Microbiología, Inmunología y Hematología, biotecnólogo (Universidade Federal da Grande Dourados, Brasil). 

References

(1) Balestrino R, Schapira AHV. Parkinson disease. European Journal of Neurology. 2020 Jan 27;27(1):27–42.

(2) Sezgin M, Bilgic B, Tinaz S, Emre M. Parkinson’s Disease Dementia and Lewy Body Disease. Seminars in Neurology. 2019 Apr 29;39(02):274–82.

(3) Jagaran K, Singh M. Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. International Journal of Molecular Sciences. 2021 Aug 23;22(16):9082.

(4) Lima PHC de, Antunes DR, Forini MM de L, Pontes M da S, Mattos BD, Grillo R. Recent Advances on Lignocellulosic-Based Nanopesticides for Agricultural Applications. Frontiers in Nanotechnology. 2021 Dec 17;3.

(5) Souza MB, Santos JS, Pontes MS, Nunes LR, Oliveira IP, Lopez Ayme AJ, et al. CeO2 nanostructured electrochemical sensor for the simultaneous recognition of diethylstilbestrol and 17β-estradiol hormones. Science of The Total Environment. 2022 Jan;805:150348.

(6) Pontes MS, Antunes DR, Oliveira IP, Forini MML, Santos JS, Arruda GJ, et al. Chitosan/tripolyphosphate nanoformulation carrying paraquat: insights on its enhanced herbicidal activity. Environmental Science: Nano. 2021;8(5):1336–51.

(7) Pontes MS, Graciano DE, Antunes DR, Santos JS, Arruda GJ, Botero ER, et al. In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. Journal of Hazardous Materials. 2020 Sep;396:122484.

(8) Mezacasa AV, Queiroz AM, Graciano DE, Pontes MS, Santiago EF, Oliveira IP, et al. Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. Journal of Photochemistry and Photobiology A: Chemistry. 2020 Feb;389:112252.

(9) Bhat ZI, Kumar B, Bansal S, Naseem A, Tiwari RR, Wahabi K, et al. Association of PARK2 promoter polymorphisms and methylation with colorectal cancer in North Indian population. Gene. 2019 Jan;682:25–32.

(10) Novosadova E, Anufrieva K, Kazantseva E, Arsenyeva E, Fedoseyeva V, Stepanenko E, et al. Transcriptome datasets of neural progenitors and neurons differentiated from induced pluripotent stem cells of healthy donors and Parkinson’s disease patients with mutations in the PARK2 gene. Data in Brief. 2022 Apr;41:107958.

(11) Shukuya T, Takahashi K. Germline mutations in lung cancer. Respiratory Investigation. 2019 May;57(3):201–6.

(12) Machado K dos S. Seleção eficiente de conformações de receptor flexível em simulações de docagem molecular [Internet]. [Porto Alegre, RS - Brazil]: Pontifícia Universidade Católica do Rio Grande do Sul ; 2011 [cited 2022 May 14]. Disponible en: https://tede2.pucrs.br/tede2/handle/tede/5134

(13) Macalino SJY, Basith S, Clavio NAB, Chang H, Kang S, Choi S. Evolution of In Silico Strategies for Protein-Protein Interaction Drug Discovery. Molecules. 2018 Aug 6;23(8):1963.

(14) Chatzigoulas A, Karathanou K, Dellis D, Cournia Z. NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. Journal of Chemical Information and Modeling. 2018 Dec 24;58(12):2380–6.

(15) Wauer T, Komander D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO Journal. 2013 Jul 31;32(15):2099–112.

(16) Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science. 2021 Jan 1;30(1):70–82.

(17) Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein–protein docking. Nature Protocols. 2020 May 1;15(5):1829–52.

(18) Hristova VA, Beasley SA, Rylett RJ, Shaw GS. Identification of a novel Zn2+ -binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. Journal of Biological Chemistry. 2009 May 29;284(22):14978–86.

(19) Nelson DL, Cox MM. Princípios de Bioquímica de Lehninger. 4o. 2002.

Published

2022-08-02

How to Cite

Santos, G., Nhoato Huber, R. ., & Meireles Duarte, G. F. (2022). In silico study of silver nanoparticles against Parkinson’s disease through molecular docking. Revista MEDUCP, 2(3), 64–72. https://doi.org/10.59085/2789-7818.2022.32